MATHS

FORMULA

Continuity and Differentiability

By

BHARAT BHUSHAN @ B. K. NAL

Assistant Professor (Computer Science) Director, BSTI, Kokar

&

SUPRIYA BHARATI

Assistant Professor (Computer Science) Asst. Director, BSTI, Kokar

Buddha Science & Technical Institute

Kokar, Ranchi-834001, Jharkhand, India www.bharatsir.com

IMPORTANT DEFINATIONS, FORMULAE AND METHODS

- **1. Continuity at a point :** A function f is said to be continuous at x = a if $\lim_{x \to a} f(x)$ exists and $\lim_{x \to a} f(x) = f(a)$. In other words, if $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = f(a)$, then f is continuous at x = a.
- **2.** Discontinuity and its types: If the function f is not continuous at x = a, then f is said to be discontinuous at x = a. There are three types of discontinuity:
 - (a) Removable Discontinuity: If $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) \neq f(a)$ then f has removable discontinuity at x = a. Such type of discontinuity can be removed by redefining the function.
 - (b) Discontinuity of First Kind: If $\lim_{x \to a^+} f(x) \neq \lim_{x \to a^+} f(x)$ then f has discontinuity of first kind.
 - (c) Discontinuity of Second Kind: If at least one of the limits, $\lim_{x\to a} f(x)$ or $\lim_{x\to a^+} f(x)$, does not exists finitely, at x=a then f has discontinuity of second kind.
- 3. Continuous Function: If the function f is continuous at every point of its domain, then f is said to be a continuous function. There are some continuous functions. For examples:
 - (a) A constant function is everywhere continuous.
 - (b) A polynomial function is everywhere continuous.
 - (c) A rational function is continuous in its domain.
 - (d) Logarithmic function is continuous on $(0, \infty)$.
 - (e) Exponential function is everywhere continuous.
 - (f) Modulus function is everywhere continuous.
 - (g) Trigonometric functions are continuous in their domains.
- **4. Important Note :** If f and g are any two continuous functions, then f + g, f g, fg, f/g (provided $g(x) \neq 0$) are also continuous function.
- 5. Continuity on an Interval: A function f is said to be continuous on an interval [a, b] if it is continuous at every points in [a, b] including the end point a and b.

Continuity of f at a means. $\lim_{x \to a^+} f(x) = f(a)$ and continuity of f at b means $\lim_{x \to b^-} f(x) = f(b)$

- **6.** Method to examine the Continuity: The continuity of the function f can be examined as under:
 - I. Let $f(x) = \begin{cases} \frac{x^2 4}{x 2}, & x \neq 2 \\ 4, & x = 2 \end{cases}$ at x = 2 when $x \to 2^-$ or $x \to 2^+$, f(x) remains

same, so find $\lim_{x\to 2} f(x)$ and use definition of continuity. It means, if $\lim_{x\to 2} f(x) = f(2)$ then f is continuous at x = 2 otherwise discontinuous.

II. In case of modulus function, greatest integer function exponential function (e^x) or function like $f(x) = \begin{cases} x+2 & \text{if } x < 1 \\ 3 & \text{if } x = 1 \text{ at } x = 1, f(x) \text{ is different for } 2x-1 & \text{if } x > 1 \end{cases}$

LHL and RHL, so find LHL and RHL separately and then check whether LHL = RHL = f(a) or not.

- 7. Differentiability: A function f is said to be differentiable at x = a if $\lim_{x \to a} \frac{f(x) f(a)}{x a}$ exists finitely i.e., if $\lim_{x \to a^-} \frac{f(x) f(a)}{x a} = \lim_{x \to a^+} \frac{f(x) f(a)}{x a}$, if a function f is differential at any point, then it must be continuous at that point. But converse is not necessarily true.
- 8. Important formulae: If y = f(x), then derivative of y w.r.t. x is written as

$$\frac{dy}{dx}$$
 or y_1 or $f'(x)$. We can also use $\frac{d}{dx} \equiv D$.

The second order derivative of y = f(x), is written by

$$\frac{d^2y}{dx^2} \left[\frac{d}{dx} \left(\frac{dy}{dx} \right) \right] \text{ or } y_2 \text{ or } f''(x)$$

- $i. \quad D(x)^n = nx^{n-1}$
- ii. D (Constant) = 0

iii.
$$D(\sqrt{f(x)}) = \frac{1}{2\sqrt{f(x)}} X f'(x)$$

iv.
$$D\left[\frac{1}{f(x)}\right] = \frac{-1}{(f(x))^2} X f'(x)$$

v.
$$D[f(x)]^n = n[f(x)]^{n-1}Xf'(x)$$

vi.
$$D(\sin x) = \cos x$$

vii.
$$D(\cos x) = -\sin x$$

viii.
$$D(\tan x) = \sec^2 x$$

ix.
$$D(\cot x) = -\cos ec^2 x$$

x.
$$D(\sec x) = \sec x \tan x$$

xi.
$$D(\cos ec x) = -\cos ecx \cot x$$

xii.
$$D[\sin[f(x)]] = \cos[f(x)] X f'(x)$$

xiii.
$$D(\sin^{-1} x) = \frac{1}{\sqrt{1 - x^2}}$$

xiv.
$$D(\cos^{-1} x) = \frac{-1}{\sqrt{1-x^2}}$$

xv.
$$D(\tan^{-1} x) = \frac{1}{1+x^2}$$

xvi.
$$D(\cot^{-1} x) = \frac{-1}{1+x^2}$$

xvii.
$$D(\sec^{-1} x) = \frac{1}{x\sqrt{x^2 - 1}}$$

xviii.
$$D(\cos ec^{-1}x) = \frac{-1}{x\sqrt{x^2 - 1}}$$

$$xix. D(e^x) = e^x$$

xx.
$$D[e^{f(x)}] = e^{f(x)} X f'(x)$$

xxi.
$$D(a^x) = a^x \log a, (a > 0)$$

xxii.
$$D(\log x) = \frac{1}{x}$$

xxiii.
$$D[\log f(x)] = \frac{1}{f(x)} X f'(x)$$

xxiv.
$$D[f(x) \pm g(x)] = D[f(x)] \pm D[g(x)]$$

xxv.
$$D[Cf(x)] = C[Df(x)], C = constant$$

xxvi.
$$D[f(x) X g(x)] = f(x) \frac{d}{dx} [g(x)] + g(x) \frac{d}{dx} [f(x)]$$

xxvii.
$$D\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)\frac{d}{dx}[f(x)] - f(x)\frac{d}{dx}[g(x)]}{[g(x)]^2}$$

$$xxviii. \lim_{x\to 0}\frac{e^x-1}{x}=1$$

xxix.
$$\lim_{x \to 0} \frac{a^x - 1}{x} = \log a$$
xxx.
$$\lim_{x \to 0} \frac{\log(1 + x)}{x} = 1$$

- **9. Chain Rule :** If y is a function of x and x is a function of u, then y is a composite function of u. By chain rule $\frac{dy}{du} = \frac{dy}{dx} \times \frac{dx}{du}$
- **10. Derivatives of Implicit Function :** A function of the type y = f(x) is called an explicit function and a function of the type f(x, y) = c, where c is any constant is called an implicit function. For example, $x^2 + y^2 + xy = 2$ is an implicit function. Let us differentiate it w.r.t. x, we have

$$2x + 2y\frac{dy}{dx} + \left[x\frac{dy}{dx} + y \times 1\right] = 0$$

$$\Rightarrow (2y+x)\frac{dy}{dx} = -(2x+y)$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\left[\frac{2x+y}{2y+x}\right]$$

NOTE: If possible, first express the implicit function as an explicit function, then differentiate.

11. Derivatives of parametric functions: If $x = f(\theta)$ and $y = f(\theta)$, then such functions are called parametric functions. Here θ is the parameter. Using chain rule

$$\frac{dy}{dx} = \frac{dy}{d\theta} X \frac{d\theta}{dx}$$

- **12. Logarithmic differentiation :** If we have the function of the types $y = [f(x)]^{f(x)}, [f(y)]^{f(x)} = [f(x)]^{f(y)}$ etc., then first take log. Both sides, then differentiate. For example, if $y = (x)^{\log x}$. Taking log both sides $\log y = (\log x)(\log x) = (\log x)^2$. Now differentiate it w.r.t. x and find $\frac{dy}{dx}$.
- **13. Derivative of a function w.r.t. another function :** To differentiate a function f(x) w.r.t. another function g(x), let us suppose that A = f(x) and B = g(x), then using chain rule, we have $\frac{dA}{dB} = \frac{dA}{dx} \times \frac{dx}{dB}$

- **14. Rolle's Throrem :** If $f: [a, b] \rightarrow R$ is continuous on [a, b] and differentiable on (a, b) such that f(a) = f(b), then there exists at least one $c \in (a, b)$ such that f'(c) = 0.
- **15. Lagrange's Mean Value (LMV) Theorem :** If $f:[a,b] \to R$ is continuous on [a,b] and differentiable on (a,b). Then there exists at least one $c \in (a,b)$ such that $f'(c) = \frac{f(b) f(a)}{b-a}$.

Remarks:

I. If f(x) is of the type $f(x) = \begin{cases} \frac{1-\cos x}{x^2}, & x \neq 0 \\ \frac{1}{2}, & x = 0 \end{cases}$, then f(x) remains same for

L.H.L. and R.H.L., so to check continuity at x = 0 here use the following: $\lim_{x \to 0} f(x) = f(0)$

II. If the function is of the type f(x) = |x|, $f(x) = \begin{cases} 2x - 1, & x < 1 \\ 1, & x = 1 \text{ etc, then } f(x) \text{ is } \\ 2x + 1, & x > 1 \end{cases}$

different for LHL and RHL, so to examine continuity at any point a, use the following $\lim_{x \to a^+} f(x) = \lim_{x \to a^+} f(x) = f(a)$

Note: if any mistake on this, kindly inform on the mail id:

bknal1207@gmail.com