MATHS

FORMULA

Applications of Derivatives

By

BHARAT BHUSHAN @ B. K. NAL

Assistant Professor (Computer Science) Director, BSTI, Kokar

ጼ

SUPRIYA BHARATI

Assistant Professor (Computer Science) Asst. Director, BSTI, Kokar

Buddha Science & Technical Institute

Kokar, Ranchi-834001, Jharkhand, India www.bharatsir.com

IMPORTANT DEFINATIONS, FORMULAE AND METHODS

1. Rate of change of quantities:

- (a) If a quantity y varies with another quantity x, such that y = f(x), then $\frac{dy}{dx}$ represents the rate of change of y w.r.t. x and $\frac{dy}{dx}\Big|_{x=x_0}$ represents the rate of change of y w.r.t. x at $x=x_0$.
- (b) If two variables x and y varying w.r.t. another variables t, i.e., if x = f(t) and y = g(t), then by chain Rule

$$\frac{dy}{dx} = \frac{dy}{dt} X \frac{dt}{dx}$$

Thus the rate of change of y w.r.t. x can be calculated using the rate of change of y and that of x both w.r.t. t.

Here it should be noted that $\frac{dy}{dx}$ is positive if y increases as x increases and is negative if y decreases as x increases.

2. Increasing Function:

(a) Without using derivatives:

A function f is said to be increasing on an interval (a, b) if $x_1 < x_2$ in $(a, b) \Rightarrow f(x_1) \le f(x_2)$ for all $x_1, x_2 \in (a, b)$.

(b) Using derivative:

A function f is increasing on (a, b) if $f'(x) \ge 0$ for each x in (a, b),

3. Decreasing Function:

(a) Without using derivatives:

A function f is decreasing on (a, b) if $x_1 < x_2$ in $(a, b) \Rightarrow f(x_1) \ge f(x_2)$ for all $x_1, x_2 \in (a, b)$.

(b) Using derivative:

A function f is decreasing on (a, b) if $f'(x) \le 0$ for each x in (a, b)

4. Strictly Increasing Function:

(a) Without using derivative:

A function f is strictly increasing on (a, b) if $x_1 < x_2$ in $(a, b) \Rightarrow f(x_1) < f(x_2)$ for all $x_1, x_2 \in (a, b)$

(b) Using derivative:

A function f is strictly increasing on (a, b) if f'(x) > 0 for each x in (a, b).

- 5. Strictly decreasing function
 - (a) Without using derivative:

A function f is strictly decreasing on (a, b) if $x_1 < x_2$ in $(a, b) \Rightarrow f(x_1) > f(x_2)$ for all $x_1, x_2 \in (a, b)$

(b) Using derivative :

A function f is strictly decreasing on (a, b) if f'(x) < 0 for each x in (a, b).

6. Critical Point:

A point on the curve y = f(x) where either f'(x) doesn't exist or f'(x) = 0 is called critical point.

- 7. Method to find the intervals in which a function is strictly increasing or strictly decreasing:
 - I. Let the function f is given by f(x) on (a, b).
 - II. Find f'(x) and using f'(x) = 0, find all the critical points satisfying the given interval (a, b). If interval is not mentioned then consider R i.e. $(-\infty, \infty)$ as the interval.
 - III. Arrange these critical points in ascending order. Let $x_1, x_2, x_3, x_4, \dots, x_n$ be the critical points in (a, b) such that $x_1 < x_2 < x_3 < x_4, \dots, x_n$.
 - IV. Now check the sign of f'(x) in the intervals $(a, x_1), (x_1, x_2), (x_2, x_3), (x_3, x_4), \dots, (x_n, b)$.
 - V. The function f is strictly increasing on those intervals, in which f'(x) > 0 and strictly decreasing in which f'(x) < 0.

8. Slope of tangent to a curve:

Let y = f(x) be a curve, then $m = \frac{dy}{dx}\Big|_{P(h,k)}$ is called slope of tangent to the given curve at point P(h, k).

9. Slope of Normal to a curve:

Let y = f(x) be a curve and P(h, k) be a point on it. Slope of tangent to the given curve is $m = \frac{dy}{dx}\Big|_{B(h,k)}$

Therefore slope of normal to this curve at the same point is $-\frac{1}{m}$

10. Equation of tangent and normal to a curve :

Let P(h, k) be a point on the given curve y = f(x) then equation of tangent to the given curve at P(h, k) is y - k = m(x - h) and the equation of normal to this curve at the same point is $y - k = -\frac{1}{m}(x - h)$ where m is the slope of tangent to the given curve.

11. Important Note: Let m be the slope of tangent to a curve y = f(x) at any point

P(h, k) i.e.
$$m = \frac{dy}{dx}\Big|_{P(h,k)}$$
, then

- I. m = 0, if the tangent is parallel to x axis.
- II. m is not defined $\frac{1}{m} = 0$, if the tangent is parallel to y-axis.
- III. If the tangent makes an angle θ with positive x-axis, then $m = \tan \theta$.
- IV. If the tangent is parallel to a line having slope m_1 then $m = m_1$.
- V. If the tangent is perpendicular to a line having slope m_1 , then $m \times m_1 = -1$.
- VI. Two curve touch each other if the slopes of their tangents are equal at the points of intersection of the curves.
- VII. Two curves are orthogonal if $m_1m_2 = -1$ where m_1 and m_2 be the slopes of their tangents at the points of intersection of the curves.

12. Differentials:

For a function y = f(x)

- I. The differential of x, denoted by dx, is defined by $dx = \Delta x$.
- II. The differential of y, denoted by dy, is defined as $dy = \left[\frac{dy}{dx}\right] \Delta x$.

13. Approximations:

We can use the differentials to approximate values of certain quantities.

Let y = f(x) be a function, then Δy is the actual change in y corresponding to small increment Δx in x. If δx is very-very small as compared to x, then dy is nearly equal to Δy . dy is the approximate change in y, so when Δx is very very small as compared to x, we have $dy \approx \Delta y$.

14. Absolute Error:

The error Δx in x is called absolute error in x.

15. Relative Error:

 $\frac{\Delta x}{x}$ is called relative error in x.

16. Percentage Error:

 $\frac{\Delta x}{x}$ x 100 is called percentage error in x.

17. Maxima and Minima:

Let f be a function defined on an interval I. Then

(a) f is said to have a maximum value in I, if there exists a point c in I such that $f(c) \ge f(x)$, for all $x \in I$.

The number f(c) is called the maximum value of f in I and the point c is called a point of maximum value of f in I.

(b) f is said to have a minimum value in I, If there exists a point c in I such that $f(c) \le f(x)$, for all $x \in I$.

The number f(c) is called the minimum value of f in I and the point c is called a point of minimum value of f in I.

18. Monotonic Function:

A function which is either increasing or decreasing in the given interval I is called monotonic function. Every monotonic function assumes its maximum/minimum value at the end points of the domain of definition of the function.

19. Local maxima and Local minima:

Let f be a function and Let c be an interior point in its domain, then

(a) c is called a point of local maxima if there is an h > 0 such that $f(c) \ge f(x)$, for all $x \in (c-h, c+h)$.

The number f(c) is called the local maximum value of f.

(b) c is called a point of local minima if there exists an h > 0 such that $f(c) \le f(x)$, for all $x \in (c-h, c+h)$.

The number f(c) is called the local minimum value of f.

20. Method to find local maxima or Local minima using first or second derivative test:

- **I.** Let the given function be f(x).
- II. Find f'(x) and using f'(x) = 0, find the critical points of f(x) say $x = x_1, x_2, \dots$
- **III.** Find f''(x) and check the sign of f''(x) at these critical points.
- IV. Those points for which f''(x) > 0, are known as points of local minima and for those f''(x) < 0 are known as points of local maxima.
- V. Case of Failure: If f''(x) = 0 at any critical point say $x = x_1$, then second derivative test fails.

Now we can use first derivate test to find local maxima or minima.

VI. First derivation test:

- (a) First check the sign of f'(x) when x is slightly less than x_1 .
- (b) Then secondly check the sign of f'(x) when x is slightly greater than x_1 .
- (c) If f'(x) changes its sign from + to -, then x_1 is the point of local maxima.
- (d) If f'(x) changes its sign from to +, then x_1 is the point of local minima.

(e) If f'(x) does not change its sign, then x_1 is called point of inflexion, means the point where there is no maxima or minima.

Note: if any mistake on this, kindly inform on the mail id:

