MATHS

FORMULA

Differential Equations

By

BHARAT BHUSHAN @ B. K. NAL

Assistant Professor (Computer Science)
Director, BSTI, Kokar

&

SUPRIYA BHARATI

Assistant Professor (Computer Science)
Asst. Director, BSTI, Kokar

Buddha Science & Technical Institute

Kokar, Ranchi-834001, Jharkhand, India www.bharatsir.com

IMPORTANT DEFINATIONS, FORMULAE AND METHODS

- **1. Differential Equation :** A differential equation is an equation which involves an independent variables, a dependent variable and the differential co-efficient.
- **2. Ordinary Differential Equation :** A differential equation involving derivatives of the dependent variable with respect to only one independent variable is called an ordinary differential equation.
- **3. Order of Differential Equation :** It is the order of the highest derivative appearing in the equation.
- **4. Degree of Differential Equation :** It is the highest power (positive integral index) to which the highest order derivative is raised when the differential equation is written as a polynomial in the derivatives.
- 5. Solution of Differential Equation: It is the relationship between the variables (not involving their derivatives) which satisfies the given differential equation.
- 6. General (or Complete) Solution: It is the solution in which the number of independent arbitrary constants is equal to the order of the differential equation.
- 7. Particular Solution: It is the solution obtained from the general solution by giving particular value(s) to the arbitrary constant(s).
- 8. Homogeneous Differential Equation: A differential equation of the form $\frac{dy}{dx} = f(x, y) \text{ is said to be homogeneous if } f(x, y) \text{ is a homogeneous function of degree zero.}$
- 9. Linear Differential Equation: A differential equation of the form $\frac{dy}{dx} + Py = Q$, or $\frac{dx}{dy} + Px = Q$, where P and Q are constants or functions of x is
 - known as first order linear differential equation.
- 10. Procedure to form a Differential equation representing a family of curves depending on one parameter.

Let the family of curves be f(x, y, a) = 0 ...(1)

- (i) Differentiate (1) with respect to x. Let new relation is g(x, y, y', a) = 0 ...(2)
- (ii) Eliminate 'a' from equations (1) and (2) to get required differential equation.

11. Procedure to form a Differential equation representing a family of curves depending on two parameters.

Let the family of curves be f(x, y, a, b) = 0 ...(1)

- (i) Differentiate (1) with respect to x. Let new relation is g(x, y, y', a, b) = 0 ...(2)
- (ii) Differentiate (2) with respect to x. Let new relation is h(x, y, y', y'', a, b) = 0

...(3)

(iii) Eliminate a and b from equations (1), (2) and (3) to get required differential equation.

12. Procedure to solve Homogeneous Differential Equation:

(i)Let
$$\frac{dy}{dx} = \frac{f(x, y)}{g(x, y)}$$
 be a homogeneous differential equation.(1)

(ii) Put
$$y = Vx$$
 in equation (1) so that $\frac{dy}{dx} = V + x \frac{dV}{dx}$

(iii) Equation (1) will reduce in variable separable form.

Note: If homogeneous equation is in the form of $\frac{dx}{dy} = \frac{f(x, y)}{g(x, y)}$ then, put x = Vy so

that
$$\frac{dx}{dy} = V + y \frac{dV}{dy}$$

13. Procedure to solve first order linear differential equation:

Consider the equation $\frac{dy}{dx} + Py = Q$.

- (i) Find the Integrating factor $(I.F.) = e^{\int Pdx}$.
- (ii) Write the solution of given linear differential equation as

$$y(I.F.) = \int Q. (I.F.) dx + C$$

(iii)Solve the above integral to get required solution.

Note: If the linear differential equation is of the form $\frac{dx}{dy} + Px = Q$, then find

 $(I.F.) = e^{\int Pdx}$ and write the solution is as $x.(I.F.) = \int Q. (I.F.)dy + C.$

14. Note:

(a) To find the degree of a differential equation, make sure that the differential equation must be a polynomial equation in derivatives.

- (b) Order and degree (if defined) of a differential are always positive integers.
- (c) The order of differential equation representing a family of curves is same as the number of arbitrary constants present in the equation corresponding to the family of curves.

